Swizec Teller - a geek with a hatswizec.com

    Web page segmentation

    The Internet talks a lot about article extraction - taking a page and deciding what the real content is. Hell, I've written about the Uncanny valley of web scraping myself.

    Article extraction is such a wide spread problem that a bunch of API's exist to help you solve it. Everything from a fringe feature in five or ten semantic API's, to startups devoted wholly to extracting articles - like Diffbot.

    But what if you don't want to extract an article? What if all you want is: this is the header, here is a sidebar, these are ads, here is content, oh and this is a footer, btw those are comments.

    Visual vs. Densitometric segmentation (expected)
    Visual vs. Densitometric segmentation (expected)

    Suddenly you are shit out of luck.

    Sure, it makes sense the API's wouldn't let you do this - it's supposedly their secret magic sauce. Right?

    Except it isn't.

    Analyzing the different implementations of article extractors reveals that far from using a methodical approach of marking up different bits of a page, they mostly work as tree pruning algorithms - go through DOM, remove anything that's not promising, end up with the juicy article.

    Nothing you could use to create a web page segmentor ...

    Turns out, there is but a single very useful paper devoted to web page segmentation - Christian Kohlschütter's A Densitometric Approach to Web Page Segmentation.

    Yep, the same guy who later wrote _Boilerplate Detection using Shallow Text Features, _which later turned into Boilerpipe, one of the best (most certainly the quickest) libraries web content extraction.

    In the paper Kohlschütter explains that only three approaches exist:

    • segmenting visually
    • linguistic approach
    • densitometric approach

    Visual segmentation is perhaps the easiest to understand - you look at a website and as a person you instantly know where different sections are. A computer vision algorithm could do something similar. With the caveat you now have to render every page, then run a visual learning algorithm and do a bunch of things that are computationally very expensive.

    The linguistic approach is somewhat more reasonable - take a page, look at distributions of words and syllables and what have you (quanititive linguistics this is called) and decide based on that. Problem here is, this only works well for large blocks of text ... the linguistic content in, say, a header might be somewhat lacking.

    Block fusion algorithm

    Visual vs. Densitometric (actual)
    Visual vs. Densitometric (actual)

    Kohlschütter's densitometric approach has a tendency to work as well as a visual algorithm, while being as fast as a lingustic approach ... bloody marvelous!

    The idea is basically this:

    • walk through nodes
    • assign a text density to each node -> number-of-tokens / number-of-'lines'
    • merge neighbor nodes with the same densities
    • repeat until desired granularity is reached

    The simplicity of this algorithm is just brilliant. Even better is the fact they managed to get it down to 15ms per page on average. For comparison's sake - the time it takes Readability to clean up a page is counted in seconds, an average response time from Diffbot (visual approach) is about 10 seconds per page.

    Yep, that fast.

    And for the icing on the cake - most main bits of the Block Fusion Algorithm are already implemented deep inside the bowels of Boilerpipe. You just have to look hard enough.

    Enhanced by Zemanta

    Did you enjoy this article?

    Published on May 16th, 2012 in Algorithm, Information Retrieval, Sorting and Searching, Uncategorized, Web page

    Learned something new?
    Want to become an expert?

    Here's how it works 👇

    Leave your email and I'll send you thoughtfully written emails every week about React, JavaScript, and your career. Lessons learned over 20 years in the industry working with companies ranging from tiny startups to Fortune5 behemoths.

    Join Swizec's Newsletter

    And get thoughtful letters 💌 on mindsets, tactics, and technical skills for your career. Real lessons from building production software. No bullshit.

    "Man, love your simple writing! Yours is the only newsletter I open and only blog that I give a fuck to read & scroll till the end. And wow always take away lessons with me. Inspiring! And very relatable. 👌"

    ~ Ashish Kumar

    Join over 14,000 engineers just like you already improving their careers with my letters, workshops, courses, and talks. ✌️

    Have a burning question that you think I can answer? I don't have all of the answers, but I have some! Hit me up on twitter or book a 30min ama for in-depth help.

    Ready to Stop copy pasting D3 examples and create data visualizations of your own?  Learn how to build scalable dataviz components your whole team can understand with React for Data Visualization

    Curious about Serverless and the modern backend? Check out Serverless Handbook, modern backend for the frontend engineer.

    Ready to learn how it all fits together and build a modern webapp from scratch? Learn how to launch a webapp and make your first 💰 on the side with ServerlessReact.Dev

    Want to brush up on your modern JavaScript syntax? Check out my interactive cheatsheet: es6cheatsheet.com

    By the way, just in case no one has told you it yet today: I love and appreciate you for who you are ❤️

    Created bySwizecwith ❤️